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Abstract--Weakly nonlinear stability theory is used to study the stability characteristics of condensate film 
flowing down the outer surface of a vertical cylinder. The surface tension and the mass transfer due to 
phase change are taken into account at the liquid-vapor interface. A method of perturbation is applied for 
the solution and the results show that supercritical stability in the linearly unstable region and subcritical 
instability in the linearly stable region exist. The lateral curvature of the cylinder has a destabilizing effect 
on the flow stability. The curvature of the cylinder will intensify the instability of the film flow in comparison 
with that of the planar flow. A possible application of the present results to some aspects of the qualitative 

design of a coating process is given. Copyright © 1996 Elsevier Science Ltd. 

INTRODUCTION 

The instability problem of fluid film flow down a ver- 
tical or inclined plate is commonly found in many 
industrial applications, such as for coating, laser cut- 
ting process and casting technology. It would be 
highly desirable to know the flow configuration and 
its time dependence in order to develop suitable con- 
ditions under which the homogeneous film growth 
could be obtained. 

The theory of laminar film condensation flow due 
to gravity was first developed by Nusselt [1], but the 
stability of condensate film flow had never been inves- 
tigated until the 1970s. Bankoff [2], Marschall and Lee 
[3], and Lin [4] successively investigated the stability 
analysis of a condensate film flowing down a vertical 
or an inclined plate. They concluded that the critical 
Reynolds number is small for all practical con- 
densation problems, and therefore, the liquid film can 
be considered to be unstable. Also, they pointed out 
that condensation will stabilize the film flow, while 
evaporation will destabilize the flow. Unsal and 
Thomas [5] presented a linear stability analysis of 
condensate film flow. They considered the effect of 
mass transfer at the l iquid-vapor interface. Burelbach 
et al. [6] considered a thin viscous liquid layer which is 
bounded above by its vapor and below by a uniformly 
heated (or cooled) rigid plane surface, they derived a 
one-sided model to decouple the dynamics of the 
vapor from that of liquid, and discussed the instability 
due to the effects of mass loss or gain, vapor recoil, 
thermocapillarity, long-range molecular forces, sur- 
face tension, and viscous forces. In fact, the boundary 
conditions used by Unsal and Thomas [5] are the 
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special cases of Burelbach et al. [6]. Joo et al. [7] 
extended the work of Burelbach et al. [6] to include 
the effect of gravity and hydrostatic pressure. Essen- 
tially, the linear stability analysis can only be applied 
to study the cases of infinitesimal disturbances. When 
disturbance grows to be of a finite value, linear stab- 
ility theory becomes inappropriate. The nonlinear 
modification of linear waves was studied by Benney 
[8], but the effect of surface tension was not included, 
so the solution had no tendency toward a finite-ampli- 
tude equilibrium state. While considering the effect of 
surface tension, supercritical stability was found to be 
possible [9, 10]. Onsal and Thomas [11] investigated 
the nonlinear stability of vertical condensate film flow 
by using perturbation methods. Hwang and Weng [ 12] 
showed that both supercritical stability and subcritical 
instability are possible for condensate film flow. Tsai 
et al. [13] studied the nonlinear stability of electrically 
conducting liquid film under the action of magnetic 
field. An extensive review article on the evolution of 
falling film wave problems can be found in Chang 
[14]. 

Hydrodynamic stability problems regarding film 
flowing down a vertical cylinder surface has been 
studied by some researchers. Lin and Liu [15] com- 
pared their theoretical results with known experiments 
of falling films on cylinder and of creeping annular 
threads in viscous liquid. Krantz and ZoUars [16] pre- 
sented an asymptotic solution to point out the impor- 
tant effect of curvature on the stability of the film 
flow, and showed that the curvature of the cylinder 
will intensify the instability of film flow in comparison 
with the planar flow. Lin and Weng [17] dealt with 
the linear stability of condensate film flow down a 
vertical cylinder and considered the effect of phase 
changes, but some errors existed in the coefficients of 
their derived generalized kinematic evolution equa- 
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NOMENCLATURE 

a = r,,/h~,, dimensionless radius distance 1¢. w 
Cp specific heat of liquid 
d dr + id,, complex wave celerity : ,  r 
g gravitational acceleration 
h film thickness 
h,, local base flow film thickness 

Greek symbols 
Ilf~. latent heat 
K liquid thermal conductivit3~ 
N d  = ( 1 - [:~) ~-,"[~Pr 2, dimensionless [~ 
W = ~- ' -  t ' ,~) . mmensmmess 

surface tension # 
p liquid pressure Jl 
p~ vapor pressure 0 
P e  = P r  R e ,  local Peeler number t' 
P r  = pv(_ 'p /K,  Prandtl number  
r, dimension radius t~ 
R e  = uoho/v ,  Reynolds number f) 
t time (~ 

Co 
S surface tension of liquid ,i 
T liquid temperature 
7[ vapor saturation temperature 
T~ wall temperature 
u,, = g h ~ / ' 4 v F ,  reference velocity 

velocities along z- and r-directions, 
respectively 
coordinates along and transverse to 
the cylinder surface. 

wave number  
= Pv,/P, density ratio 
infinitesimal parameter 
= Cp(7\ T, , ) /hre ,  Jakob number 
dimensionless disturbance film 
thickness 
dimensionless temperature 
fluid kinematic viscosity 
fluid dynamic viscosity 
liquid density 
vapor density 
liquid stream function 
disturbance wavelength. 

Superscripts 
* dimensionless quantities. 

tion for film thickness. Rosenau and Oron [18] derived 
an amplitude equation which describes the evolution 
of a disturbed film interface flowing down an infinite 
vertical cylindrical column. They pointed out numeri- 
cally that both supercritical stability and subcritical 
instability are possible for film flow, they showed also 
that the evolving waves may break in a finite time for 
some linearly unstable equilibrium. Davalos-Orozco 
and Ruiz-Chavarria [19] investigated the linear stab- 
ility of a fluid layer flowing down the inside and out- 
side of a rotating vertical cylinder; they pointed out 
that the centrifugal force can stabilize the film flow 
so as to counteract the destabilizing effect of surface 
tension. In the absence of rotation, the stability still 
can be found for some critical wave number. 

In this present study, the corrected model for the 
linear stability analysis of film flow proposed by Lin 
and Weng [17] is extended to investigate the weakly 
nonlinear instability of condensate film flowing down 
the outer surface of a vertical cylinder. The method 
of multiple scales is applied to solve the nonlinear 
generalized kinematic equation order by order, and 
a secular equation of the G i n z b u r g L a n d a u  type is 
obtained. Through the nonlinear analysis, we could 
realize theoretically that the equilibrium finite ampli- 
tude could be controlled by the adjustment &relevant  
parameters, such as the radius of cylinder. 

ANALYSIS 

Consider the condensate film flow of an incom- 
pressible viscous film on the outer surface of an infinite 

vertical cylinder, as shown in Fig. 1. Under the 
assumption of constant physical properties and axi- 
symmetric configuration, the basic equations gov- 
erning the flow can be written as follows : 

~u u ?w 
& + r  +~=~ = 0 ,  (1) 

I 
V 
L. 

I g 

Fig. 1. Physical model and coordinate system. 
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c3--~U + u v r + n ~- v u, (2) 
at ~3z p Or 

aw +u~rW +w~_~w z ~@ ~ V~w+o, a~ = - p a~ + v (3) 

OT dT OT K 
a t  +U~r  + w  az pCp VZT (4) 

where 

vz l a ( a )  a ~ 
=r~rr  r~rr +Oz z '  

u and w are the velocity components along the r- and 
z-directions, respectively, p the liquid pressure, and T 
the temperature. The last term of equation (2) denotes 
the body force due to gravity. 

The boundary conditions at the outer wall of the 
cylinder are the no-slip condition for velocities and a 
constant wall temperature, i.e. 

r ~ ro, 

u = w = 0 ,  T = T w .  (5) 

While at the liquid-vapor interface, the balance of 
the normal and tangential stresses, the balance of the 
interfacial energy, and the equality of liquid and vapor 
temperatures are given as : 

At free surface (r = to+h) 

(gT Oh aT~ 2 
P--Pg+K2 ~r 63Z ~Z) 

× + -'j 

- 2 p v  ~rr-- ~ r  + dzJOz 

F yl -I 

sa=hFl+fOh~=13'=_S![1 / a h ' f l  - ' ~  
+ v L  wz; +l z) I =o, 

(6) 

g + ~ z ) + 2 ~ - z  - ~ r J a z k \ ~ z j  - 1  = O, 

(7) 

K(OT ~ T a h \  / Oh ¢?h) 
\Or ~z ~ ) + p h f g ~ U - W ~ - -  ~ = 0 ,  (8) 

T = T~. (9) 

Introduce the stream function ~p such that 

1 O~o 1 ~ o  
u = w . . . .  ( 1 0 )  

r ~ z  r Or 

and define the following dimensionless quantities : 

p* = P -Pg  t p* = ~P h* h T -  Tw 
pu:o uoh~o = ho 0 - L -  rw 

r ro z* ~z t* Cmot 
r * = h o  a = h o  = h o  - ho 

Re = uoho Pr -- flvCp Pe = PrRe, 
v K 

( ~ ) 1 / 3  (l _ fl)~2 (11) 
W = Nd = f l p r ~  

where T~ is the saturated temperature, hfg is the latent 
heat of phase change, fl is the ratio of vapor density 
to liquid density, pg is the vapor pressure, and S is the 
surface tension, uo is the reference velocity, ~ is the 
wave number. Then, by omitting the superscript sym- 
bol "*", the above governing equations and the associ- 
ated boundary conditions become 

p=c~Re  i@ 3~9:)_o~2(r-lq)._tq_r 2~0:q9: r 

--r  3q)2--r 2~Orq~z~)q--o~3Re-lr Iq~_:: (12) 

r-  ' (r(r-  l q~r)r), = ~ R e ( - p .  + r -  l ~or, + r -  2 ~,o ,;o~r 

--r 3q~z(pr--r-2~/prz)--Ot2r '¢p~=+4F (13) 

r I(rOr)r = ozPe(Ot--r-l~PrO=+r-I~p:O~)--oflO._z 

(14) 

where 

F = [ 2 ( l + a ) 2 1 n ( l ~ + a a ) - ( l + 2 a ) l  1. (15) 

A t  the cylinder surface (r = a) 

q~, = ~0, = 0 = 0. (16) 

A t  the liquid-vapor interface (r = a + h) 

p+ 2Re[-ctr-I ~pr.+~r 2qgz-+-~h:(-r-l fpr r 

+ r  2~p~+~2r-t~p=)--c~3r Iq~r..h~](l+c~2h2)-~ 

+ WRe-S/3(2F)I/3[~2h=(I +azh_ . )  3/2 

- - r '  (1 +~2h~) 1/2] 

+NdRe-2(Or-cFhf l=)2( l+u2h~)  -~ = 0 (17) 

r I(~Or)r = ~2r-lq~_=+2~3(r-lq~: 

- 2 ~ r - l ~ , z ) ( ~ 2 h ~ - l ) h =  (18) 

~(Or-o~2h:O:)+~Pe(r-lqg:+r-lq~,h:-ht) = 0 (19) 

0 = 1. ( 2 0 )  

Since the long wave length modes (i.e. small wave 
number ~) are the most unstable ones, we expand 
the dimensionless stream function ~o, pressure p and 
temperature 0, in the following form : 
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~o = ~oo +~q~ +O(od), 

P = Po + ~ P l  + O(~2), 

0 = 0o +~0t +O(~2). 

Substituting the above expressions into equations 
(12)-(20). The resulting equations are then solved 
order by order. In practice, the parameter Wis usually 
of large value, so c? W is taken to be of order one. In 
the liquid film with phase change, Ndis  usually small. 
The zeroth- and first-order solutions (given in Appen- 
dix A) are substituted into the dimensionless free sur- 
face kinematic equation (19), and yields the nonlinear 
generalized kinematic equation as 

h, + X(h) + A(h)h~ + B(h)h,~, + C(h)h ....... 

+D(h)h~ +E(h)hxh~,.~ = O. (21 )  

The coefficients of the above equation are given in 
Appendix B. 

STABILITY ANALYSIS 

From a simple analysis based on Nusselt 's assump- 
tion, the variation of film thickness of the base flow is 
found to be very small for I~h~[ << 1, so it is reasonable 
to assume the local dimensionless thickness equals to 
one. Express the dimensionless film thickness for the 
perturbed state as : 

h = 1 + ~7 (22) 

where q is the perturbation of the stationary thickness. 
The above equation is then substituted into equation 
(21) and in kept terms up to order of q3 it yields the 
evolution of q as follows : 

q t+X 'q+Aq , .+Bt l~ ,+Cq  ...... + Dr/2 + Er/,~/,.~, 

= - -  y/2 nt- ~-- y/3 q- (A 'tl -- I "  r/2) y/, 

+ ( B ' t / + B "  '\ / C" 2 \ 
T e),. .  + tc ' ,+  T" )" .... 

+ ( D + D ' q ) n i  +(E+E'q)t l ,q~. ,]+O(tl  4) (23)  

where the value of X, A, B, C, D, E and their deriva- 
tives are evaluated at h = 1. 

Linear stability analysis 
To study the linear stability analysis, the nonlinear 

terms of equation (23) are neglected and a linearized 
equation is obtained as 

3q . . . . .  3t l +B32q 34q 
~ 7 + ~ " + a ~  8x 2 + c a ~  = ° (24)  

Employing the normal mode analysis we assume 
that 

q = a~ exp [i(x-- dt)] + cc (25) 

In the above expression, aj is the perturbation 
amplitude and cc is the complex conjugate counter- 
part. The complex wave celerity d is given by 

d =  d~+id, = A + i ( B - C - X ' ) .  (26) 

The flow is linearly unstable for 4 > 0, and the flow 
is linearly stable for 4 < 0. For  d~ = 0, it yields the 
neutral stability curve. 

Nonlinear stability analysis 
To study the nonlinear stability, the method of mul- 

tiple scales is used according to 

3 3 8 + e 2 8  
a 5 = 8 5 + ~  (27) 

8 3 ~? 
8x = 8xx +eSx,  (28) 

q(c~,x, x l , t .  tl ,t2) = eql +e2th +g~q3 (29) 

where e is a small parameter, and 

t~ = et t2 = e2t x~ = e.x. (30) 

Then, equation (23) becomes 

(L0 +eL~ +82L2)(E/~I -1-82/~2 q-~3g/3 ) = --82N2 - c 3 N 3  

where 

(31) 

8 3 2 3 4 
Lo = & + X'  + A ff-y. + S ~x2 + C ~ (32) 

8 8 8 8 33 3 
L, = 8t~ + A  8.~7 + 2 B s x  ~ + 4 C ~  8x~7 

(33) 

(34) 
~9 ?2 82 82 

L2 = ~ + B~7~Xl2 + 6 C 8 x  2 8x~ 

X" 
N~ = ~ -  q~ + A'q~ th,. + Bgh ql,.~ + C'ql ql ...... 

+ Dq2, + Eql.~ql~,. (35) 

N; = X"qlq2 + A'(tllqz~ +ql~q2 +qlqt.,,) 

+ B'(ql q2 ~, + 2qltllx~, + q t ~,-r/2) + C'(qt v/2 ........ 

+4~h it1 . . . .  ~ +qL ..... q2) + D(2th J12, 

+2//1 .r/ix,) +E(ql~q2.....~ +3ql~ql ...... + q i.,-~xl/2~ 

+ q, ~. , . - ,  ) +'6X'"q~ -+-'2 A ".~.,~ +~Bq~tl ,... 

+~C"qf, ,  ....... + D ' n , q ~ + E ' n , q , ~ q l  ..... (36) 

Equation (31) is solved order by order. The equa- 
tion of O(e) is L0rh = 0. The solution is of  the fol- 
lowing form : 

rh = al (xl, t~, t2) exp [i(x-d, t)]  + cc. (37) 
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The solution of ~/2 and the secular condition for the 
equation of O(c 2) are 

rl2 = ea~ exp [2i(x-drt)]  + cc (38) 

~3a2 c3a~ 
~t~ + 01 Ox~ -- ~ 2 d~a2 + (El + iFi)a~a2 = 0 

(39) 

where 

e =  er+iei = ( 1 6 C - 4 B + X ) - I ( f f ~ - B  ' 

+ C ' - D + E - - i A ' )  

Dj = B - 6 C  

E1 = (X" - 5B' + 17C' + 4D - 10E)er - A 'e~ 

l t i t  3 n 3 t t  +(~X --~B +~C + D ' - E ' )  

F~ = ( X " -  5B' + 1 7 C ' + 4 D -  lOE)ei + A'er +½A". 

(40) 

Equation (39) would be used to investigate the 
weakly nonlinear behavior of fluid film flow. 

For a filtered wave, there is no spatial modulation, 
the solution of equation (38) may be written as 

a~ = ao e x p ( -  ibt2). (41) 

Substituting the above equation into equation (39) 
and neglecting the second term, one can obtain the 
following equations : 

8a----3° = (e 2d~- El a2o)ao (42) 
Ot2 

8[b(t2)t2] _ F~ ao.2 (43) 
Ot2 

Equation (42) is the so-called Ginzburg-Landau 
equation. Of course, if El were zero, it can be reduced 
to the equation that is obtained from the linear theory. 
The second term of the right-hand side of equation 
(42) is due to the nonlinearity, Nd may moderate or 
accelerate the exponential growth of the linear dis- 
turbance according to the signs of d~ and El. Equation 
(43) is the modification of the wave speed of the infini- 
tesimal disturbance due to the nonlinear effect. In the 
linearly unstable region (d~ > 0), the condition for the 
existence of a supercritical stable wave is E~ > 0, and 
the final amplitude (ea0) is obtained as follows : 

= ( d ~  ~/2 
eao \El ]  (44) 

and the nonlinear wave speed is given as 

On the other hand, in the linearly stable region 
(d, < 0), if El < 0, the film flow presents the behavior 
of  subcritical instability, and ea0 is the threshold 
amplitude. 

RESULTS AND DISCUSSIONS 

The linear stability analysis yields the neutral stab- 
ility curve which is determined by ~di = 0. The ~-Re 
plane is separated into two regions. One is the linearly 
stable region (~d~ < 0) where small disturbances decay 
with time and the other is the linearly unstable region 
(~d~ > 0) in which small perturbations will grow as 
time increases. In order to study the effect of radius on 
the stability of film flow, some of the nondimensional 
parameters were fixed to be constant values in all 
numerical calculations, i.e. dimensionless surface 
tension, W = 6173.5 ; the Jakob number, ~ = 0.0872 ; 
and Prandtl number, Pr = 2.62. The results obtained 
for the case of plane flow, by setting a --* oo, are gen- 
erally agreed with those of the previous study by Lin 
and Weng [17]. 

Linear stability results 
Figures 2(a--c) show the neutral stability curves of 

condensation film flow for different values of  radius, 
i.e. a = 10, 16, oo, respectively. It is indicated that the 
region of the linearly stable area (~d~ < 0) will be 
expanded when the value of the radius is increased. 

Nonlinear stability results 
The nonlinear stability analysis is used to study 

whether the finite-amplitude disturbance in the lin- 
early stable region will cause instability (subcritical 
instability) and to study whether the subsequent non- 
linear evolution of disturbance in the linearly unstable 
region will redevelop into a new equilibrium state with 
a finite amplitude (supercritical stability) or grow to 
be unstable. By inspecting of the nonlinear amplitude, 
equation (44), one can find that the negative value of 
El will make the system become unstable. Such type 
of instability in the linear stable region is called sub- 
critical instability ; i.e. the amplitude of disturbance is 
larger than the threshold amplitude, and causes the 
system to reach an explosive state, although the pre- 
diction from using the linear theory is stable. 

The hatched areas in Figs. 2(a-c) near the neutral 
stability curve reveal that both subcritical instability 
(dl < 0, El < 0) and the explosive solution (di > 0, 
El < 0) are all possible for the larger values of a in 
the film flow. 

From the nonlinear stability analysis for subcritical 
instability, it is shown that if the finite amplitude of 
the initial disturbance is greater than the threshold 
amplitude, the system will be unstable. Figure 3 dis- 
plays the threshold amplitude in the subcritical 
unstable region with different radius values for the 
case of Re = 10. It is found that the threshold ampli- 
tude will become larger for the increasing cylinder 
radius, then the film flow will be more stable. 
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(a) 0 . 1 2  

0 . 0 9  

a 0 . 0 6  

0 . 0 3  

0.00 
o.oo 3.~o o.6o 

\ /- - 

/ 
/ 

/ 
/ 

adi ( 0 / adL > 0 

9.00 1 2 . 0 0  1 5 . 0 0  

Re  

(b) 0.12 

0.09 

a 0.06 

0 . 0 3  

/ adt ) 0 
/ 

a d i  ( 0 / /  

0.00 .... 
0.00 3.00 0.~o 9.~0 12.oo' 15.oo 

Re 

(c) 0.12 

0,09 

) o 
0.06 

oo!o 
a d i  ( 0 I 

0.03 
E l } 0  

0.0 , ~ , 
3.00 6.00 9.00 12.00 1 5 . 0 0  

R e  

Fig. 2. Stability curve of condensate film flow for (a) a = 10, 
(b) a =  16and(c) a ~ c .  

In the linearly unstable region, the linear ampli- 
fication rate is positive, while the nonlinear ampli- 
fication rate is negative. Therefore, the linearly infini- 
tesimal disturbance in the unstable region will not 
grow to infinity, but, rather reaches to an equilibrium 

0.90 

G O " °  

0 . 6 0  

0.30 a = 10  

o . o o  
0 . 1 3  0 . 1 4  0 . 1 5  

a 

Fig 3 Threshold amplitude in the subcriticat unstable region 
with different radius values for Re = 10. 

amplitude that is obtained from equation (44). Figure 
4 displays the supercritical stable amplitude with 
different values of  radius for Re = 5. It is found that 
the increase of  the radius of  cylinder will lower the 
threshold amplitude : and the flow will be more stable. 

The wave speed predicted by the linear theory, given 
in the equation (26), will not change for all wave 
numbers;  but the nonlinear wave speed, given by 
equation (45), can be influenced by wave numbers. 
The variations of  nonlinear wave speed with respect 
to wave number for several values of  a are shown in 
Fig. 5. It is found that both the linear and nonlinear 
wave speeds are decreased with the increasing radius. 

From above discussions, it can be found that a 
cylinder with a smaller radius makes the flow more 
unstable. This is due to the surface tension of  the 
lateral curvature. In equation (17), the streamwise 
surface tension term, W R e  s:~(2F)' 3~'-h=(l +o:2h:) ~:. 

is independent of the value of  r, but the lateral 
surface tension term, W R e  s'~(2F)l:3r ~(l+:t2h~) i_~ 
is inverse to the value of  r. When the film flows down 

0.35 

0.25 

2~a~ 

0.15 

0.05 
0.045 0.0~50 0.055 

a 

Fig. 4. Threshold amplitude in the supercritical stable region 
with different radius values for Re = 5. 
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2 . 1 0  

Nor 

2 . 0 0  

1 . 9 0  

1.80 

- - -  l i n e a l "  • • • a = 1 0  
= = - ,  = = 16 

n ° n ] i n e a r  • • • o. • oo 

1.70 
0.05 0.07 0.00 

a 

Fig. 5. Speeds of linear and nonlinear wave with different 
radius values for Re = 10. 

the outer surface of  the cylinder with a smaller radius, 
the surface tension term of  the lateral curvature will 
become larger. Therefore, it has a destabilizing effect. 
This destabilizing effect occurs because the radius of  
the trough of  waves have a smaller value than that at 
the crest of  the waves, and the surface tension will 
produce large capillary pressure at the smaller radius 
of  the curvature. This induces the capillary pressure 
force tending to move the fluid trough to the crest, 
thus increasing the amplitude of  the wave. 

Figure 6 can show that condensate film flow (~ > 0) 
is more stable than the isothermal film flow (~ = 0) ; 
the nonlinear speed for condensate flow is lower than 
that of  isothermal flow, no matter  what the value of  
radius is, because increasing the condensate rate at 
the wave trough will decrease the wave amplitude, and 
such effect tends to stabilize the film. 

2.50 

2.30 

Ncr 2.10 

1.90 i 

1 . 7 0  
0 . 0 5  

a =  1 0  
- - -  t = 0  A A A  

G = 1 0  =o.oo72 : : - . . .  

. . . . . . . . . . . . . . . . . . . .  -e- . . . . . . . . . . . . . . . . . . .  

0.06 0.07 
Ct 

Fig. 6. Speeds of linear and nonlinear wave with various 
phase change numbers and different radius values for 

Re = 10. 

C O N C L U S I O N S  

Weakly nonlinear stability of  a condensate film 
flowing down the outer surface of  a vertical cylinder 
is investigated by the perturbation method. The effect 
of  phase change is taken into account in the interfacial 
boundary conditions, and a nonlinearly generalized 
kinematic equation is obtained. 

It is shown from linear stability analysis that, the 
cylindrical curvature has a destabilizing effect because 
an increase of  value of  the radius will expand the 
linearly stable region. Obviously, the linear stability 
analysis gives a statement of  the qualitative tendency 
of  the film flow's dynamic behavior, but  not  of  its 
finite amplitude. Only from the nonlinear stability 
analysis of  the film flow can the finite amplitudes of  
stability be obtained. 

The method of  multiple scales is used for the weak 
nonlinear stability analysis. It indicates that super- 
critical stability in the linearly unstable region exists 
where the infinitesimal disturbance will redevelop into 
a new equilibrium finite amplitude. Also, there exists 
a subcritical instability in the linear stable region. The 
threshold amplitude in the subcritical unstable region 
will be reinforced with the increase of  the cylinder's 
radius. In the mean time, such an increase will also 
reduce the amplitude of  the supercritical stable wave 
and nonlinear wave speed. 

We conclude that the flow will be more stable with 
the increase of  the cylinder's radius. 
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Zeroth-order solution 
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APPENDIX B 
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